-
ML lec 01 - 기본적인 ML용어와 개념 정리인공지능 및 기계학습 개론/ML_LEC 2020. 2. 10. 19:50
ML
- explicit programming
- spam filter : many rules
- Automatic driving : too many rules
- ML : Field of study that gives computers the ability to learn without being explicitly programmed
Supervised/Unsupervised learning
- supervised : learning with labeled examples (training set)
- Image recognition(image-cat/dog/mug/hat… labled)
- unsupervised : un-labeled data
- word clustering
- google news grouping
Supervised learning
- Image labeling : tagged images
- Email spam filter : labeled spam/email
- predicting exam score : previous exam score and time spent
Training data set
- {X(feature), Y(label)} 학습하여 모델 생성
- AlphaGo
- 바둑판 기보 학습
Type of supervised learning
- 정확한 시험 점수 예측 0~100점 : regression(넓은 범위)
- pass/fail : 분류, binary classification
- 등급 책정 : multi-label classification
'인공지능 및 기계학습 개론 > ML_LEC' 카테고리의 다른 글
ML lec 07-1: 학습 rate, Overfitting, 그리고 일반화 (Regularization) (0) 2020.02.11 ML lec 06-1 Softmax Regression: 기본 개념 소개 (0) 2020.02.11 ML lec 06-2 Softmax classifier 의 cost함수 (0) 2020.02.11 ML lec 03 - Linear Regression의 cost 최소화 알고리즘의 원리 설명 (0) 2020.02.10 ML lec 02 - Linear Regression (0) 2020.02.10