-
1.1. Motivations인공지능 및 기계학습 개론 2020. 2. 17. 20:06
Avandance of data
- text
- image
- timebase
- geo-space
- social network
Examples of ML Application
- Document Classification
- Tock Market Prediction
- Spam Filtering and Importance(Tagging)
- SNS Recommendation
- Plate Num Recognition
- Helicopter(Robot) Control
- Opinion Mining, Implicit System
Types of Machine Learning
- Supervised Learning : 알아 맞추기, 예측
- Unsupervised Learning : 요약, 정리, 대표, 군집
- Reinforcement Learning : 좀더 우리가 바라는 지능적인 행동(좀더 robotics)
Supervised Learning
- You know the true value, label
- You can provide examples of the true value
- 미리 가이드가 정해진 데이터들을 학습
- Classification : true/false
- Regression : Grouping, Ranking, Types, Value prediction
- Case
- Spam filtering
- Automatic grading
- Automatic categorization
Unsupervised Learning
- You don’t know the true value
- 순수히 기계가 주어진 데이터를 활용해 군집/패턴을 찾을 때
- 있는 데이터를 그대로 분석
- Clustering : estimating sets and affiliations of instances to the sets
- Filtering : estimating underlying and fundamental signals from the mixture of signals and noises
- Case
- Discovering clusters, latent factors, graph structures
'인공지능 및 기계학습 개론' 카테고리의 다른 글
1.2. MLE(Maximum Likelihood Estimation) (0) 2020.02.17